Wednesday, September 30, 2020

An SSE-optimized IIR filter

This is an SSE-optimized IIR filter, which is able to process 4 biquad filters simultaneously.

/* Copyright(c) 2017, James Slepicka All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met : 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and / or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #pragma once #include <xmmintrin.h> class c_biquad4 { public: c_biquad4(const float *g, const float *b2, const float *a2, const float *a3); ~c_biquad4(void) {}; float process(float input); void *operator new (size_t size) { return _aligned_malloc(size, 16); } void operator delete(void *p) { _aligned_free((c_biquad4*)p); } private: __m128 z1; __m128 z2; __m128 d; __m128 g; __m128 a2; __m128 b2; __m128 a3; }; inline c_biquad4::c_biquad4(const float *g, const float *b2, const float *a2, const float *a3) { d = _mm_setzero_ps(); z1 = _mm_setzero_ps(); z2 = _mm_setzero_ps(); this->g = _mm_loadu_ps(g); this->b2 = _mm_loadu_ps(b2); this->a2 = _mm_loadu_ps(a2); this->a3 = _mm_loadu_ps(a3); } inline float c_biquad4::process(float input) { d = _mm_move_ss(d, _mm_load_ss(&input)); __m128 post_gain1 = _mm_mul_ps(d, g); __m128 out = _mm_add_ps(post_gain1, z1); __m128 t_z1_1 = _mm_mul_ps(post_gain1, b2); t_z1_1 = _mm_add_ps(t_z1_1, z2); __m128 t_z1_2 = _mm_mul_ps(out, a2); z1 = _mm_sub_ps(t_z1_1, t_z1_2); __m128 t_z2 = _mm_mul_ps(out, a3); z2 = _mm_sub_ps(post_gain1, t_z2); d = _mm_shuffle_ps(out, out, 0x93); return _mm_cvtss_f32(d); }
To generate the constants, g, b2, a2, and a3, using Matlab:
% lowpass elliptical, 20kHz d = fdesign.lowpass('N,Fp,Ap,Ast', 8, 20000, .1, 80, 1786840); Hd = design(d, 'ellip', 'FilterStructure', 'df2tsos'); set(Hd, 'Arithmetic', 'single'); g = regexprep(num2str(reshape(Hd.ScaleValues(1:4), [1 4]), '%.16ff '), '\s+', ',') b2 = regexprep(num2str(Hd.sosMatrix(5:8), '%.16ff '), '\s+', ',') a2 = regexprep(num2str(Hd.sosMatrix(17:20), '%.16ff '), '\s+', ',') a3 = regexprep(num2str(Hd.sosMatrix(21:24), '%.16ff '), '\s+', ',')